Architecture and Interfaces



PhyloTastic

"An application is phylotastic to the extent
that, in response to a user query S, it supplies
expert phylogenetic knowledge of S, in a form

useful for research, in a timely manner."

Turns out we need multiple moving parts to
make that vision possible.



Minimal moving parts

TNRS — maps "dirty" labels onto taxa

TreeStore —is queried to identify the tree(s)
that best match the taxa

Pruner/Grafter — supplies the minimum
spanning tree for the taxa

Dater — supplies branch lengths / node ages
proportional to time



PhyloTastic as an MVC app

* Prior to PhyloTastic-1 we started thinking of
the architecture as Model-View-Controller:

— Model — the taxon that become a tree
— View — whatever is the final serialization

— Controller — that which maps user input onto
manipulations of the Model



The PhyloTastic Controller

* Following the MVC design pattern, we need to
architect a Controller that knows how to map
user input onto manipulations of the Model to
generate the requested View

* This means integrating the moving parts we
previously identified as essential to
PhyloTastic



How to integrate

* Moving parts are all web services

* No need to adopt a single programming
language

* No obvious single way of defining interfaces,
could be any (or all) of:
— SPARQL endpoints
— WSDL-based interfaces
— Roll-your-own RESTful APls



Prior art

* At PhyloTastic-I, the architecture group
developed three integrated workflows:

— node.js — Helena Deus developed a JavaScript-
based workflow

— CGIl — Ben Vandervalk developed a Perl/CGl-based
workflow

— Galaxy — Rutger Vos developed a workflow inside
the Galaxy workflow environment



Lessons learned

* On the positive side, it is apparently easy to
glue the moving parts together as we came up
with three working implementations

* On the negative side, we did not produce a
conclusive definition of how it all should fit
together: all solutions were very ad hoc



Standards

* To make PhyloTastic acceptable to scientists,
the results must record the provenance of the
data

e Some standards can record such metadata
better than others

* On the other hand, the combination of web
services and megatrees forces us to be
concise



What we should probably do

* Describe the data types and parameters for
each of the services

* Decide on terms for them (i.e. pseudo-
ontologize them)

* Integrate the moving parts based on formal
description of interfaces



What we should not do

* Have deep, long-winded discussions about
esoteric ontological concepts

* Try to learn hip new technologies with too
little tool support

* Be purists about our approaches



